

Ocean acidification in the North Atlantic: controlling mechanisms

- Maribel I. García-Ibáñez¹, Patricia Zunino², Friederike Fröb³, Lidia I. Carracedo⁴, Aida F.
 Ríos[†], Herlé Mercier⁵, Are Olsen³, Fiz F. Pérez¹
- ⁵ ¹Instituto de Investigaciones Marinas, IIM-CSIC, Vigo, E36208, Spain.
- ²Ifremer, Laboratoire de Physique des Océans, UMR 6523 CNRS/Ifremer/IRD/UBO, Ifremer Centre de Brest,
 Plouzané, CS 10070, France.
- ⁷ Plouzane, CS 10070, France
- ³Geophysical Institute, University of Bergen and Bjerknes Centre for Climate Research, Bergen, N5007,
 Norway.
- 10 ⁴Faculty of Marine Sciences, University of Vigo, Vigo, E36200, Spain.
- 11 ⁵CNRS, Laboratoire de Physique des Océans, UMR 6523 CNRS/Ifremer/IRD/UBO, Ifremer Centre de Brest,
- 12 Plouzané, CS 10070, France.
- 13 ^{*}Deceased.
- 14 Correspondence to: Maribel I. García-Ibáñez (<u>maribelgarcia@iim.csic.es</u>)

Abstract. Repeated hydrographic sections provide critically needed data on, and understanding of, changes in 15 basin-wide ocean CO2 chemistry over multi-decadal timescales. Here, high-quality measurements collected at 16 17 thirteen cruises carried out along the same track between 1981 and 2015, have been used to determine long-term 18 changes in ocean CO₂ chemistry and ocean acidification in the Irminger and Iceland basins of the North Atlantic 19 Ocean. Trends were determined for each of the main water masses present and are discussed in the context of the 20 basin-wide circulation. The pH has decreased in all water masses of the Irminger and Iceland basins over the past 21 34 years, with the greatest changes in surface and intermediate waters (between -0.0008 \pm 0.0001 pH units·yr⁻¹ 22 and -0.0013 ± 0.0001 pH units yr⁻¹). In order to disentangle the drivers of the pH changes, we decomposed the 23 trends into their principal drivers: changes in temperature, salinity, total alkalinity (A_T) and total dissolved 24 inorganic carbon (both its natural and anthropogenic components). The increase of anthropogenic CO_2 (C_{ant}) was 25 identified as the main agent of the pH decline, partially offset by A_T increases. The acidification of intermediate 26 waters caused by Cant uptake has been reinforced by the aging of the water masses over the period of our 27 analysis. The pH decrease of the deep overflow waters of the Irminger basin was similar to that observed in the 28 upper ocean, and was mainly linked to the Cant increase, thus reflecting the recent contact of these deep waters 29 with the atmosphere.

30 Keywords. Ocean acidification; C_{ant}; water masses; Subpolar Gyre.

31 1 INTRODUCTION

32 The oceanic uptake of a fraction of the anthropogenic CO₂ (i.e., C_{ant}; CO₂ released from humankind's 33 industrial and agricultural activities) has resulted in long-term changes in ocean CO₂ chemistry, commonly 34 referred to as ocean acidification, OA (e.g., Caldeira and Wickett, 2003, 2005; Raven et al., 2005; Doney et al., 35 2009; Feely et al., 2009). The changes in the ocean CO₂ chemistry result in declining pH and reduced saturation 36 states for CaCO3 minerals (e.g., Bates et al., 2014). The average pH (-log10[H⁺]) of ocean surface waters has decreased by about 0.1 pH units since the beginning of the industrial revolution (1750), and based on model 37 38 projections we expect an additional drop of 0.1-0.4 by the end of this century, even under conservative CO_2 39 emission scenarios (Caldeira and Wickett, 2005; Orr, 2011; Ciais et al., 2013). The rate of change in pH is at

least a hundred times faster than at any time since the last Ice Age (Feely et al., 2004; Raven et al., 2005), clearly
outpacing natural processes in ocean chemistry that have occurred in the past due to geological processes (Raven
et al., 2005). These changes in ocean CO₂ chemistry will most likely have adverse effects on organisms,
particularly calcifying ones, on ecosystems (e.g., Langdon et al., 2000; Riebesell et al., 2000; Pörtner et al.,
2004; Orr et al., 2005; Doney et al., 2009; Gattuso et al., 2014) and on major marine biogeochemical cycles (e.g.,
Gehlen et al., 2011; Matear and Lenton, 2014).

46 The global ocean has absorbed $\sim 30\%$ of the C_{ant} emitted to the atmosphere between 1750 and the present 47 (Sabine et al., 2004; Khatiwala et al., 2013; DeVries, 2014; Le Quéré et al., 2015). This Cant is not evenly 48 distributed throughout the oceans (Sabine et al., 2004), but enters the interior ocean preferentially in regions of 49 deep convective overturn and subduction (Maier-Reimer and Hasselmann, 1987; Sarmiento et al., 1992; Lazier 50 et al., 2002). This explains why the Meridional Overturning Circulation (MOC) makes the North Atlantic Ocean 51 one of the most important Cant sinks of the global ocean, storing 25% of the global oceanic Cant (Sabine et al., 52 2004; Khatiwala et al., 2013) despite being only 11% of the global ocean volume (Eakins and Sharman, 2010). 53 The MOC transports Cant-laden surface waters from the Equator to the northern North Atlantic Ocean (e.g., 54 Wallace, 2001; Anderson and Olsen, 2002; Álvarez et al., 2003; Olsen et al., 2006; Quay et al., 2007; Zunino et al., 2015b), where deep water formation provides a pathway for C_{ant} into the interior ocean (Lazier et al., 2002; 55 Pérez et al., 2008; Steinfeldt et al., 2009; Pérez et al., 2013). As regions close to deep water formation areas and 56 57 where water mass transformation occurs (Sarafanov et al., 2012; García-Ibáñez et al., 2015), the Irminger and Iceland basins are geographically well placed to monitor temporal changes in the Atlantic MOC (Mercier et al., 58 59 2015), and to determine the rates of Cant penetration to the deep ocean and its consequence for OA.

In this paper, we examine high-quality direct measurements of ocean CO₂ chemistry taken from thirteen cruises conducted across the Irminger and Iceland basins between 1981 and 2015. Previous studies focused on the C_{ant} uptake and its storage and effect on pH in the Irminger and Iceland basins (e.g., Pérez et al., 2008; Olafsson et al., 2009; Bates et al., 2012; Vázquez-Rodríguez et al., 2012b). Here we quantify OA for an extended period and identify its chemical and physical drivers, based on direct measurements.

65 2 MATERIALS and METHODS

66 2.1 Datasets

67 2.2.1 Cruise Information

We used thirteen cruises along the same track across the Irminger and Iceland basins, with the cruise dates spanning 34 years (1981–2015; Table 1, Fig. 1a). The bottle data were accessed from the merged data product of the Global Data Analysis Project version 2 (GLODAPv2; Olsen et al., 2016) at <u>http://cdiac.ornl.gov/oceans/GLODAPv2</u>, except for more recent unpublished data collected during the OVIDE 2012 and 2014 cruises and the 2015 cruise (58GS20150410). The data of the 1991 cruises (64TR91_1 and 06MT18_1) were merged and treated as a single cruise.

74 2.2.2 Ocean CO₂ chemistry measurements

At least two variables of the seawater CO_2 system were measured on all cruises included in our analyses, but the measured pairs varied between cruises. The total alkalinity (A_T) was analysed by potentiometric titration and

determined by developing either a full titration curve (Millero et al., 1993; Dickson and Goyet, 1994; Ono et al., 77 78 1998) or from single point titration (Pérez and Fraga, 1987; Mintrop et al., 2000), with an overall accuracy of 4 79 µmol·kg⁻¹. For samples without direct A_T measurements, it was estimated using a 3D moving window 80 multilinear regression algorithm (3DwMLR), using potential temperature (θ), salinity, nitrate, phosphate, silicate and oxygen as predictor parameters (Velo et al., 2013). The total dissolved inorganic carbon (DIC) samples were 81 analysed with coulometric titration techniques (Johnson et al., 1993), and were calibrated with Certified 82 83 Reference Materials (CRMs), achieving an overall accuracy of 2 µmol·kg⁻¹. The exception to the use of this 84 analytical technique was the 1981 TTO-NAS (Transient Tracer in the Ocean-North Atlantic Survey) cruise, 85 where DIC was determined potentiometrically (Bradshaw et al., 1981) and no CRMs were used. The TTO-NAS DIC measurements were deemed unreliable (Brewer et al., 1986), therefore, the DIC values compiled in the 86 87 GLODAPv2 merged data product are those calculated from pCO₂ and revised A_T reported by Tanhua and Wallace (2005). pH was determined either potentiometrically (Dickson, 1993a, b) using pH electrodes or, more 88 commonly, with a spectrophotometric method (Clayton and Byrne, 1993) using either scanning or diode array 89 90 spectrophotometers and m-cresol purple as an indicator. The spectrophotometric pH determination has a typical 91 precision of 0.0002-0.0004 pH units (Clayton and Byrne, 1993; Liu et al., 2011). However, Carter et al. (2013) 92 reported an inaccuracy of the spectrophotometric pH determination of 0.0055 pH units. When direct pH 93 measurements were not performed, it was computed from A_T and DIC using the thermodynamic equations of the 94 seawater CO₂ system (Dickson et al., 2007) and the CO₂ dissociation constants of Mehrbach et al. (1973) refitted 95 by Dickson and Millero (1987). For these calculated pH values, we estimated an uncertainty of 0.006 pH units 96 by random propagation of the reported A_T and DIC accuracies. The exception to the latter is the 1981 TTO-NAS 97 cruise, whose DIC problems caused the estimated uncertainty for calculated pH values to be slightly higher 98 (0.008 pH units). A_T data from the 1981 TTO-NAS cruise were checked against A_T values generated by the 99 3DwMLR (Velo et al., 2013). A_T values differing by more than two times the standard deviation (confidence 100 interval; 7 μ mol·kg⁻¹) of the difference between measured A_T and 3DwMLR predicted A_T were replaced with the 101 predicted A_T value. However, for leg 6 of the 1981 TTO-NAS cruise (which was not analysed by Tanhua and 102 Wallace (2005)) the limit of substitution for the predicted A_T value was lowered to 4 μ mol·kg⁻¹. Note that the effect of A_T corrections on pH trends is negligible, since A_T corrections of 4 µmol·kg⁻¹ lead to pH changes lower 103 104 than a thousandth. The pH values reported here are at in situ conditions and on the total scale (pH_{Tis}).

105 2.2.3 Anthropogenic CO₂ (i.e., C_{ant}) estimation

106 C_{ant} concentrations were estimated using the back-calculation method ϕC_T^{0} (Pérez et al., 2008; Vázquez-107 Rodríguez, 2009a) that has previously been applied for the entire Atlantic Ocean (Vázquez-Rodríguez et al., 108 2009b). Back-calculation methods determine C_{ant} for any sample in the water column as the difference between 109 DIC concentration at the time of the measurement and the DIC concentration it would have had in preindustrial 110 times. This is represented as the difference in preformed DIC between the time of observation and the 111 preindustrial as:

112 $C_{ant} = DIC_{meas} - \Delta C_{bio} - DIC_{preind} - \Delta C_{diseq}$,

(1)

- where the preformed DIC for the time of observation is represented as the measured DIC (DIC_{meas}) less any DIC added to the water due to organic matter remineralisation and calcium carbonate dissolution (ΔC_{bio}), and the
- preindustrial preformed concentration is represented by the DIC concentration the water would have if in

equilibrium with the preindustrial atmosphere (DIC_{preind}) less any offset from such an equilibrium value, known as the disequilibrium term (ΔC_{diseq}). The procedure requires DIC and A_T as input parameters, and the empirical parameterization of the preformed $A_T (A_T^0)$ for the computation of the calcium carbonate dissolution and of the

119 ΔC_{diseq} term.

120 The φC_T^{0} method presents two main advantages. First, the spatiotemporal variability of A_T^{0} is taken into 121 account. And second, C_{ant} estimation needs no "zero- C_{ant} " reference, since the parameterizations of A_T^{0} and 122 ΔC_{diseq} are determined using the subsurface layer as reference for water mass formation conditions (Vázquez-123 Rodríguez et al., 2012a). The overall uncertainty of the method has been estimated at 5.2 µmol·kg⁻¹ (Pérez et al., 124 2008; Vázquez-Rodríguez, 2009a).

125 The reproducibilities and uncertainties of the main variables were determined from the deep waters sampled at 126 Iberian Abyssal Plain during the seven repeats of the OVIDE line, since these waters are expected to be in near-127 steady state. The confidence intervals of those samples for each cruise (Table 2) were taken as an estimate of the 128 uncertainty of the methodologies. The uncertainties of the Apparent Oxygen Utilization (AOU; the difference 129 between the saturated concentrations of oxygen calculated using the equations of Benson and Krause (1984) and the measured concentrations of oxygen), A_T and pH on the total scale at 25°C (pH_{T25}) for the seven cruises were 130 similar. The confidence intervals of C_{ant} (2.4–3.2 µmol·kg⁻¹) and pH_{T25} (0.004–0.006 pH units) across the seven 131 132 cruises are lower than the inherent uncertainty of the ϕC_T^0 estimates (5.2 μ mol·kg⁻¹) and the accuracy of the 133 spectrophotometric pH measurements (0.0055 pH units), which provides confidence that these data are suitable for trend determination. The confidence intervals of the Cant estimates are rather similar than in other regions 134 where Cant has been compared across many cruises (i.e., 2.4 µmol·kg⁻¹ in the South Atlantic Ocean, Ríos et al. 135 136 (2003); 2.7 µmol·kg⁻¹ in the Equatorial Atlantic Ocean, 24°N, Guallart et al. (2015); and 2.7 µmol·kg⁻¹ reported 137 from a transect along the western boundary of the Atlantic Ocean from 50°S to 36°N, Ríos et al. (2015)). The 138 confidence interval of the mean values of the Iberian Abyssal Plain samples across the seven cruises (last row of 139 Table 2) was taken as an estimate of the reproducibility of the methodologies. The high reproducibilities, an 140 order of magnitude lower than the uncertainties, render confidence to the estimated trends.

141 2.2 Water mass characterization

142 Changes in ocean CO₂ chemistry were determined for the main water masses in the Irminger and Iceland 143 basins. These are: (1) Subpolar Mode Water (SPMW); (2) upper and classical Labrador Sea Water (uLSW and 144 cLSW, respectively); (3) Iceland–Scotland Overflow Water (ISOW) and; (4) Denmark Strait Overflow Water 145 (DSOW; Fig. 1b). The layers defining the water masses were delimited using potential density following Azetsu-146 Scott et al. (2003), Kieke et al. (2007), Pérez et al. (2008) and Yashayaev et al. (2008).

147 To better determine the interfaces between layers and the average value of each variable in each layer, cruise 148 bottle data were linearly interpolated onto each dbar before determining average variable values, an 149 improvement with respect to the previous approaches of Pérez et al. (2008, 2010) and Vázquez-Rodríguez et al. 150 (2012b). Upper layer data (pressure ≤ 100 dbar) were replaced with the mean value in the pressure range 50–100 151 dbar to reduce the influence of seasonal differences in sampling on the inter-annual trends (Vázquez-Rodríguez et al., 2012a). Then, the interpolated profiles were divided into the different water mass density intervals (Fig. 152 153 1b). Next, the variables were averaged over each density layer on a station by station basis for each cruise. 154 Finally, the average values in each density layer were determined for each cruise taking into account the

155 thickness of the layer and the separation between stations. Note that average values of pressure sensitive 156 parameters, i.e. pH_{Tis} , were referred to the mean pressure of the layer over the studied time period to avoid the 157 effects of the heaving of the water masses due to warming and/or of the sampling strategy over the pH trends.

158 The average values of the variables for each layer and their confidence intervals can be found in the

159 Supplementary Table S1.

160 2.3 pH deconvolution

161 Changes in ocean pH may be brought about by changes in in situ temperature (T_{is}), salinity (S), A_T , and/or 162 DIC, of which changes in the latter may be brought about by C_{ant} uptake or by natural processes (C_{nat}), such as 163 remineralisation. C_{nat} is determined as the difference between measured DIC and estimated C_{ant} . To estimate how 164 much each of these altogether five factors contributed to the observed change in pH, we assumed linearity and 165 decomposed the observed pH changes into these potential drivers according to:

$$166 \qquad \frac{dpH_{Tis}}{dt} = \frac{\partial pH_{Tis}}{\partial T_{is}} \frac{dT_{is}}{dt} + \frac{\partial pH_{Tis}}{\partial S} \frac{dS}{dt} + \frac{\partial pH_{Tis}}{\partial A_T} \frac{dA_T}{dt} + \frac{\partial pH_{Tis}}{\partial DIC} \frac{d(C_{nat} + C_{ant})}{dt},$$
(2)

167 To estimate $\frac{\partial p H_{Tis}}{\partial var}$ (where *var* refers to each of the drivers: T_{is}, S, A_T and DIC) we calculated the mean pH_{Tis} 168 for each layer and cruise using the real average value of *var* but keeping the values of the other three drivers 169 constant and equal to the mean value for the layer over all the cruises. To estimate each $\frac{\partial var}{\partial t}$ term we performed 170 a linear regression between *var* and time for each layer.

Trends of all variables involved in Eq. (2) were calculated using the annual interpolation of the observed values to avoid the bias due to the reduced availability of cruises during the 80's and 90's with respect to the 2000's.

174 3 RESULTS AND DISCUSSION

175 3.1 Mean distribution of water mass properties

176 The Irminger and Iceland basins in the North Atlantic are characterized by warm and saline surface waters, 177 and cold and less saline intermediate and deep waters (Fig. 2a,b). The central waters (here represented by the 178 SPMW layer), which dominates the upper ~700 m, are warmer and saltier in the Iceland basin than in the 179 Irminger basin, reflecting the water mass transformation that takes place along the path of the North Atlantic Current (NAC) (Brambilla and Talley, 2008). In particular, the mixing of the SPMW layer with the surrounding 180 181 waters while flowing around the Reykjanes Ridge (evident in the salinity distribution; see also García-Ibáñez et 182 al. (2015)), in conjunction with the air-sea heat loss, results in a colder and fresher SPMW layer in the Irminger 183 basin. The uLSW and cLSW layers, below the SPMW layer, are warmer and saltier in the Iceland basin due to 184 their mixing with the surrounding waters during their journey from their formation regions (Bersch et al., 1999; 185 Pickart et al., 2003; García-Ibáñez et al., 2015). The ISOW layer dominates at depths beneath the cLSW layer. 186 This layer is warmer and saltier in the Iceland basin, reflecting its circulation. ISOW comes from the Iceland-187 Scotland sill and flows southwards into the Iceland basin, where it mixes with the older North Atlantic Deep 188 Water (NADW). Then, it crosses the Reykjanes Ridge through the Charlie-Gibbs Fracture Zone (Fig. 1a), where 189 it mixes with the recently ventilated cLSW and DSOW, becoming colder and fresher. In the bottom of the 190 Irminger basin, a fifth layer is distinguished, DSOW, being the coldest and freshest layer of the section.

191 The general pattern of pH_{Tis} (Fig. 2c) follows by and large the distribution expected from the surface 192 production of organic material and remineralisation at depth. The high surface values (> 8.05) are the result of 193 the withdrawing of DIC by photosynthetic activity, while the values generally decrease with depth down to <194 7.95 in the deepest layers, because of the DIC concentration increase resulting from remineralisation. This 195 overall pattern is disrupted at ~500 m in the Iceland basin by a layer with relatively low pH_{Tis} values (< 7.98), 196 coinciding with relatively high AOU and DIC values (Fig. 2e,f). This layer could be associated to an area of 197 slower circulation where the products of the remineralization of the organic matter accumulate. This thermocline layer could also been influenced by waters of southern origin (Sarafanov et al., 2008), which are advected into 198 199 the region by the NAC, whose arrival is closely related with the North Atlantic Oscillation (Desbruyères et al., 200 2013). The presence of this low pH layer lowers the average pH of our SPMW layer in the Iceland basin 201 compared to the Irminger basin (Fig. 3). An opposite pattern is found in the uLSW layer. The water mass formation occurring in the Irminger basin (Pickart et al., 2003; García-Ibáñez et al., 2015; Fröb et al., 2016; 202 203 Piron et al., 2016) transfers recently ventilated low DIC and high pH waters to depth, which causes the mean pH 204 of uLSW in the Irminger basin to be higher than in the Iceland basin. Finally, the layers that contain the overflow 205 waters have the lowest pH values. The presence of the older NADW in the ISOW layer in the Iceland basin 206 decreases the mean pH of this layer here, making it lower than in the Irminger basin.

207 The surface waters of the section have low DIC values, which rapidly increase when increasing depth (Fig. 2f). 208 The low DIC values in the uppermost ~200 m are also related to the photosynthetic activity that withdraws DIC 209 from seawater. Below ~200 m the DIC distribution is almost homogeneous, only disrupted by relatively high 210 values in the Iceland basin at ~500 m associated with the thermocline layer, and at the bottom, associated with 211 the old NADW. The gradients in DIC anthropogenic and natural components are much stronger. This is because the Cant and Cnat distributions are anti-correlated. The Cant values are high, close to saturation (80% of saturation), 212 213 near the surface and decrease with depth (Fig. 2h), because Cant enters the ocean from the atmosphere. The C_{nat} 214 distribution has an opposite pattern, similar to that of the AOU distribution (Fig. 2e), with low surface values and 215 high bottom values (Fig. 2g), for reasons discussed above.

The A_T distribution along the section resembles the salinity distribution, with high values associated with the relatively saline central waters and low and almost homogeneous values in the rest of the section (Fig. 2d). The exception comes with the deep waters of the Iceland basin, which have among the highest A_T values while salinity is not extraordinarily high. This reflects the influence of NADW, which contains relatively large amounts of silicate related to the influence of the Antarctic Bottom Water.

221 3.2 Water mass acidification and drivers

222 Trends of pH_{Tis} in each layer and basin are presented in Table 3 and Fig. 3. The pH_{Tis} has decreased in all 223 layers of the Irminger and Iceland basins during the time period of more than 30 years (1981-2015) that is 224 covered by our data. The trends are stronger in the Irminger basin due to the presence of younger waters. The 225 rate of OA decreases with depth, except for the DSOW layer that has acidification rates close to those found in 226 the cLSW layer. This indicates that DSOW is a newly formed water that has recently been in contact with the 227 atmosphere. Moreover, the acidification rate in the ISOW layer in the Irminger basin is relatively low, which 228 could be related to the increasing importance on this layer of the relatively old NADW with the diminution in 229 volume of cLSW since mid-90s (Lazier et al., 2002; Yashayaev, 2007).

The observed rate of pH_{Tis} decrease in the SPMW layer of the Iceland basin (-0.0012 \pm 0.0001 pH units·yr⁻¹; 230 231 Table 3, Fig. 3b) is in agreement with that observed at the Iceland Sea time-series (68°N, 12.66°W; Olafsson et 232 al. (2009, 2010)) for the period 1983–2014 (-0.0014 \pm 0.0005 pH units yr⁻¹; Bates et al. (2014)). Our rates in the 233 SPMW layer of both basins are slightly lower than those observed at the Subtropical Atlantic time-series stations ESTOC (29.04°N, 15.50°W; Santana-Casiano et al. (2007), González-Dávila et al. (2010)) for the period 1995-234 $2014 (-0.0018 \pm 0.0002 \text{ pH units} \cdot \text{yr}^{-1}; \text{ Bates et al. (2014)) and BATS (32°N, 64°W; Bates et al. (2014)) for the 1.0018 \pm 0.0002 \text{ pH units} \cdot \text{yr}^{-1};$ 235 236 period 1983–2014 (-0.0017 \pm 0.0001 pH units yr⁻¹; Bates et al. (2014)). However, our rate of pH_{Tis} decrease in 237 the SPMW layer in the Irminger basin (-0.0013 \pm 0.0001 pH units yr⁻¹) is only half of that observed in the sea surface waters of the Irminger Sea time-series (64.3°N, 28°W; Olafsson et al. (2010)) for the period 1983-2014 238 239 $(-0.0026 \pm 0.0006 \text{ pH} \text{ units yr}^{-1};$ Bates et al. (2014)), which is exceptionally high compared to the other time 240 series summarized here. Comparing with the Pacific Ocean, the OA rates in the Iceland and Irminger basins are slightly lower than those reported for the Central North Pacific based on data from the time-series station HOT 241 242 $(22.45^{\circ}N, 158^{\circ}W; \text{ Dore et al. } (2009))$ for the period 1988–2014 (-0.0016 ± 0.0001 pH units yr⁻¹; Bates et al. 243 (2014)), but are in agreement with those found by Wakita et al. (2013) in the winter mixed layer at the Subarctic 244 Western North Pacific (time-series stations K2 and KNOT) for the period 1997-2011 (-0.0010 ± 0.0004 pH units \cdot yr⁻¹). 245

Vázquez-Rodríguez et al. (2012b) have previously studied the pH changes in the different water masses of the 246 247 Irminger and Iceland basins. These authors carried out a pH normalization to avoid potential biases due to 248 different ventilation stages and rates of each layer, from the different spatial coverage of the evaluated cruises. 249 The normalized pH values (pH_N) for each layer was obtained using multiple linear regressions between the 250 observed mean pH_{SWS25} (pH at seawater scale and 25°C) and the observed mean values of θ , salinity, silicate and 251 AOU, referred to the mean climatological values of θ , salinity, silicate and AOU compiled in WOA05 252 (http://www.nodc.noaa.gov/OC5/WOA05/pr_woa05.html). This normalization, combined with the lower 253 temporal coverage (1981-2008) and the fact that they evaluated trends in pH at 25°C and not at in situ conditions 254 renders direct comparisons between their and our derived trends difficult.

To infer the causes of the acidification trends reported here, we decomposed the pH trends into their individual components as described in Sect. 2.2. The results are presented in Table 3. The sum of the pH changes caused by the individual drivers (in situ temperature, salinity, A_T and DIC) matches the observed pH trends, which renders confidence to the method.

259 The temperature changes (Fig. 4a,b) have generally resulted in small to negligible pH declines (Table 3). Specifically, warming corresponds to a pH decrease of more than 0.0001 pH units yr⁻¹ in the SPMW layer of 260 261 both basins and in the LSW layers of the Irminger basin, while the effect of temperature changes on pH in the 262 other layers is negligible. Temperature driven pH change is larger in the LSW layers in the Irminger than in the Iceland basin. In the case of the uLSW layer, this is possibly explained by the deep convection occurring in the 263 264 Irminger basin (Pickart et al., 2003; García-Ibáñez et al., 2015; Fröb et al., 2016; Piron et al., 2016). In the case 265 of the cLSW layer, the higher pH changes driven by temperature changes in the Irminger basin could be explained by the rapid advection of this water mass from the Labrador Sea to this basin (Yashayaev et al., 2007). 266 267 The temperature effect on pH evaluated here is mostly thermodynamic. The same applies to the salinity effect, 268 which however is small to negligible, reflecting that salinity changes in the region (Fig. 4c,d) are insufficiently 269 large to significantly change pH.

270 The A_T has increased in all layers (Fig. 5a,b), corresponding to increasing pH (Table 3), which counteracts the 271 acidification from the CO_2 absorption. The contribution from A_T to reduce ocean acidification is significant for 272 all the layers, except for ISOW of the Irminger basin and uLSW of the Iceland basin (in which A_T trends over 273 time are not significant; Fig. 5a,b). The A_T increasing trends observed in SPMW may indicate the increasing 274 presence of waters of subtropical origin (with higher A_T) as the subpolar gyre was shrinking since mid-90s (e.g., 275 Flatau et al., 2003; Häkkinen and Rhines, 2004; Böning et al., 2006). The AT effect is evident in the ISOW layer 276 of the Iceland basin, which can be explained by the circulation and mixing of this layer. As ISOW flows 277 downstream along the Reykjanes Ridge, it mixes with cLSW and NADW (van Aken and de Boer, 1995; 278 Fogelqvist et al., 2003). The reduced volume of cLSW since mid-90s (Lazier et al., 2002; Yashayaev, 2007) has 279 increased the importance of NADW (with high A_T; Fig. 2h) in the ISOW layer, making the pH decrease of the 280 ISOW layer of the Iceland basin lower than in the Irminger basin.

281 The DIC increase (Fig. 5c,d) is the main cause of the observed pH decreases, and corresponds to pH drops between -0.00085 and -0.00134 pH units yr⁻¹ (Table 3). The waters in both the Irminger and Iceland basins 282 283 gained DIC in response to the increase in atmospheric CO₂; the convection processes occurring in these basins 284 (Pickart et al., 2003; Thierry et al., 2008; de Boisséson et al., 2010; García-Ibáñez et al., 2015; Fröb et al., 2016; Piron et al., 2016) and in the surrounding ones (i.e., Labrador and Nordic Seas) provide an important pathway for 285 DIC to pass from the surface mixed layer to the intermediate and deep layers. The effect of the DIC increase on 286 287 pH is generally dominated by the anthropogenic component (Table 3). The exception comes with the cLSW 288 layer of the Irminger basin, where dominates the natural component resulting from the aging of the layer. All 289 layers have higher Cant increase rates in the Irminger basin than in the Iceland basin (Fig. 6a,b), and therefore 290 larger pH declines, presumably a result of the proximity of the Irminger basin to the regions of deep water 291 formation. The highest Cant increase rates are found in the SPMW layer, owing to its direct contact with the 292 atmosphere, and result in the highest rates of pH decrease. The higher pH drops related to Cant increase found in 293 the SPMW layer in the Irminger basin compared to those found in the Iceland basin layer, can be related to the 294 differences in the rise in C_{ant} levels in both basins. In the Irminger basin, the rise in C_{ant} levels of the SPMW 295 layer correspond to about 85% of the rate expected from a surface ocean maintaining its degree of saturation 296 with the atmospheric CO_2 rise (computed using as reference the measurements of Mauna Loa), while in the 297 Iceland basin, this rate is about 73% of the expected rate. The lower fraction in the Iceland basin compared to the 298 Irminger basin is a consequence of the inclusion of the aforementioned poorly ventilated thermocline waters in 299 our SPMW layer (Fig. 2e,h). Note than none of the Cant trends of the SPMW layers correspond to 100% of the 300 rate expected from assuming saturation with the atmospheric CO_2 rise. This can be explained by the fact that 301 surface waters CO₂ concentration rise lags that of the atmosphere by between two to five years in this region 302 (Biastoch et al., 2007; Jones et al., 2014). We also note that the temperature and A_T changes impact the pH of 303 SPMW, decreasing and increasing it, respectively. This could indicate the increasing presence of warmer and 304 more saline (with higher A_T) waters of subtropical origin, which, because A_T effects dominate, in last instance 305 counteracts the effects of increasing DIC values. Overall this change can be explained as the result of the contraction of the subpolar gyre that took place since mid-90s (e.g., Flatau et al., 2003; Häkkinen and Rhines, 306 307 2004; Böning et al., 2006). Wakita et al. (2013) also found lower than expected acidification rates in the surface 308 waters of the Pacific Ocean, which they explained as being the consequence of increasing A_T. Finally, the strong

influence of anthropogenic component on the pH decrease of the DSOW layer stands out, and is the main agentof the pH decline in this layer.

311 The pH change related to C_{nat} changes (Fig. 6c,d) can be interpreted as changes related to ventilation of water 312 masses and water mass changes (with different A_T and DIC). Higher pH decreases related to C_{nat} changes indicate lack of ventilation and accumulation of DIC from remineralised organic material. This is clearly the case 313 314 for the cLSW layer, where the observed pH decrease is caused by a combination of the effects of Cant and Cnat-315 The greater influence of C_{nat} in the cLSW layer is the result of the aging of this water mass after its last formation event, in the mid-90s (eg., Lazier et al., 2002; Azetsu-Scott et al., 2003; Kieke et al., 2007; Yashayaev, 316 2007). C_{nat} also contributes to pH changes in the ISOW layer of the Iceland basin, which is related to the 317 318 increasing influence of the relatively old NADW over time due to the decreasing contribution of LSW (Sy et al., 319 1997; Yashayaev, 2007; Sarafanov et al., 2010; García-Ibáñez et al., 2015).

320 4 CONCLUSIONS

321 The progressive acidification of the North Atlantic waters has been assessed from direct observations obtained over the last three decades (1981-2015), with the greatest pH decreases observed in surface and intermediate 322 323 waters. By separating the observed pH change into its main drivers, we corroborate that the observed pH 324 decreases are a consequence of the oceanic Cant uptake and in addition we find that they have been partially 325 offset by A_T increases. However, while the C_{ant} concentration of the upper layer roughly keeps up with that expected from rising atmospheric CO₂, the pH decreases at a lower rate than expected from C_{ant} increase. The 326 327 increasing arrival of salty and alkaline subtropical waters transported by the NAC to the study region related to 328 the contraction of the subpolar gyre since mid-90's buffers the acidification caused by the C_{ant} increase in the 329 upper layer. The acidification rates in intermediate waters are similar to those in the surface waters, and are caused by a combination of anthropogenic and non-anthropogenic components. The acidification of cLSW due 330 331 to the Cant uptake is reinforced by the aging of this water mass from the end of the 1990s onwards. The pH of the 332 deep waters of the Irminger basin, DSOW, has clearly decreased in response to anthropogenic forcing. We also 333 observe that water mass warming contributes between 13 and 18% to the pH decrease of the upper and 334 intermediate waters of the Irminger basin, and 34% to the pH decrease of the upper waters of the Iceland basin.

335 Author Contributions

All authors contributed extensively to the work presented in this paper. M.I.G.-I., A.F.R., H.M., A.O. and F.F.P. designed the research. M.I.G.-I., P.Z., F.F., L.I.C., A.F.R., H.M., A.O. and F.F.P. analysed the physical and chemical data. M.I.G.-I. and P.Z. developed the code for processing the data. M.I.G.-I. and F.F.P. determined the anthropogenic CO_2 concentrations, average layer properties and rates, and estimated the uncertainties. M.I.G.-I. wrote the manuscript and prepared all figures, with contributions from all co-authors.

341 Acknowledgements

We are grateful to the captains, staff and researchers who contributed to the acquisition and processing of hydrographic data. The research leading to these results was supported through the EU FP7 project

344 CARBOCHANGE "Changes in carbon uptake and emissions by oceans in a changing climate", which received 345 funding from the European Commission's Seventh Framework Programme under grant agreement no. 264879. 346 For this work M.I. Garcia-Ibáñez, A.F. Rios and F.F. Pérez were supported by the Spanish Ministry of Economy 347 and Competitiveness (BES-2011-045614) through the CATARINA (CTM2010-17141) and BOCATS (CTM2013-41048-P) projects both co-funded by the Fondo Europeo de Desarrollo Regional 2007-2012 348 (FEDER). P. Zunino was supported by the GEOVIDE project as well as by IFREMER. L.I. Carracedo was 349 350 funded by the University of Vigo, through the Galician I2C Plan for postdoctoral research. H. Mercier was 351 supported by the French National Centre for Scientific Research (CNRS). F. Fröb and A. Olsen were supported

352 by a grant from the Norwegian Research Council (SNACS, project 229756/E10).

353 References

Álvarez, M., Ríos, A.F., Pérez, F.F., Bryden, H.L., and Rosón, G.: Transports and budgets of total inorganic
carbon in the subpolar and temperate North Atlantic, Glob. Biogeochem. Cycles, 17, 1002,
doi:10.1029/2002GB001881, 2003.

Anderson, L.G. and Olsen, A.: Air-sea flux of anthropogenic carbon dioxide in the North Atlantic, Geophys.
Res. Lett., 29, 1835, doi: 10.1029/2002GL014820, 2002.

359 Azetsu-Scott, K., Jones, E.P., Yashayaev, I., and Gershey, R.M.: Time series study of CFC concentrations in the

Labrador Sea during deep and shallow convection regimes (1991–2000), J. Geophys. Res., 108, 3354,
doi:10.1029/2002JC001317, 2003.

362 Bates, N., Astor, Y., Church, M., Currie, K., Dore, J., Gonaález-Dávila, M., Lorenzoni, L., Muller-Karger, F.,

363 Olafsson, J., and Santa-Casiano, M.: A Time-Series View of Changing Ocean Chemistry Due to Ocean Uptake

- of Anthropogenic CO₂ and Ocean Acidification, Oceanography, 27, 126–141, doi:10.5670/oceanog.2014.16,
 2014.
- Bates, N.R., Best, M.H.P., Neely, K., Garley, R., Dickson, A.G., and Johnson, R.J.: Detecting anthropogenic
 carbon dioxide uptake and ocean acidification in the North Atlantic Ocean, Biogeosciences, 9, 2509–2522,
 doi:10.5194/bg-9-2509-2012, 2012.

369 Benson, B.B. and Krause, D.: The concentration and isotopic fractionation of oxygen dissolved in freshwater and

- seawater in equilibrium with the atmosphere, Limnol. Oceanogr., 29, 620–632, doi:10.4319/lo.1984.29.3.0620,
 1984.
- 372 Bersch, M., Meincke, J., and Sy, A.: Interannual thermohaline changes in the northern North Atlantic 1991-
- 373 1996, Deep Sea Res. Part II Top. Stud. Oceanogr., 46, 55–75, doi:10.1016/S0967-0645(98)00114-3, 1999.

374 Biastoch, A., Völker, C., and Böning, C.W.: Uptake and spreading of anthropogenic trace gases in an eddy-

- permitting model of the Atlantic Ocean, J. Geophys. Res., 112, C09017, doi:10.1029/2006JC003966, 2007.
- Böning, C.W., Scheinert, M., Dengg, J., Biastoch, A., and Funk, A.: Decadal variability of subpolar gyre
- transport and its reverberation in the North Atlantic overturning, Geophys. Res. Lett., 33, L21S01,
 doi:10.1029/2006GL026906, 2006.
- 379 Bradshaw, A., Brewer, P., Shafer, D., and Williams, R.: Measurements of total carbon dioxide and alkalinity by
- 380 potentiometric titration in the GEOSECS program, Earth Planet. Sci. Lett., 55, 99-115, doi:10.1016/0012-
- 381 821X(81)90090-X, 1981.

- 382 Brambilla, E. and Talley, L.D.: Subpolar Mode Water in the northeastern Atlantic: 1. Averaged properties and
- 383 mean circulation, J. Geophys. Res., 113, C04025, doi:10.1029/2006JC004062, 2008.
- 384 Brewer, P.G., Takahashi, T., and Williams, R.T.: Transient tracers in the ocean (TTO) Hydrographic data and
- 385 carbon dioxide systems with revised carbon chemistry data, NDP-004/R, Carbon Dioxide Information Center,
- 386 Oak Ridge National Laboratory, Oak Ridge, TN, 28 pp., doi:10.2172/538035, 1986.
- 387 Caldeira, K. and Wickett, M.E.: Oceanography: Anthropogenic carbon and ocean pH, Nature, 425, 365–365,
- 388 doi:10.1038/425365a, 2003.
- 389 Caldeira, K. and Wickett, M.E.: Ocean model predictions of chemistry changes from carbon dioxide emissions
- 390 to the atmosphere and ocean, J. Geophys. Res., 110, C09S04, doi:10.1029/2004JC002671, 2005.
- 391 Carter, B.R., Radich, J.A., Doyle, H.L., and Dickson, A.G.: An automated system for spectrophotometric
- seawater pH measurements, Limnol. Oceanogr. Methods, 11, 16–27, doi:10.4319/lom.2013.11.16, 2013.
- 393 Ciais, P., Sabine, C., Bala, G., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J.,
- 394 Heimann, M., Jones, C., Le Quéré, C., Myneni, R.B., Piao, S., and Thornton, P.: Carbon and other
- 395 biogeochemical cycles, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I
- 396 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., Qin, D.,
- 397 Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex V., and Midgley, P.M. (eds.)],
- 398 Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. 465–570, 2013.
- 399 Clayton, T.D. and Byrne, R.H.: Spectrophotometric seawater pH measurements: total hydrogen ion
- 400 concentration scale calibration of m-cresol purple and at-sea results, Deep Sea Res. Part I: Oceanogr. Res. Pap.,
 401 40, 2115–2129, doi:10.1016/0967-0637(93)90048-8, 1993.
- 402 de Boisséson, E., Thierry, V., Mercier, H., and Caniaux, G.: Mixed layer heat budget in the Iceland Basin from
- 403 Argo, J. Geophys. Res. Oceans, 115, C10055, doi:10.1029/2010JC006283, 2010.
- 404 Desbruyères, D., Thierry, V., and Mercier, H.: Simulated decadal variability of the meridional overturning
- 405 circulation across the A25-Ovide section, J. Geophys. Res. Oceans, 118, 462–475, doi:10.1029/2012JC008342,
 406 2013.
- 407 DeVries, T.: The oceanic anthropogenic CO₂ sink: Storage, air-sea fluxes, and transports over the industrial era,
- 408 Glob. Biogeochem. Cycles, 28, 631–647, doi:10.1002/2013GB004739, 2014.
- 409 Dickson, A.G.: The measurement of sea water pH, Mar. Chem., 44, 131–142, doi:10.1016/0304-4203(93)90198410 W, 1993a
- 411 Dickson, A.G.: pH buffers for sea water media based on the total hydrogen ion concentration scale, Deep Sea
- 412 Res. Part I: Oceanogr. Res. Pap., 40, 107–118, doi:10.1016/0967-0637(93)90055-8, 1993b.
- 413 Dickson, A. and Goyet, C.: Handbook of methods for the analysis of the various parameters of the carbon
- 414 dioxide system in sea water. Version 2, Oak Ridge National Laboratory, Oak Ridge, TN, 198 pp.,
- 415 doi:10.2172/10107773, 1994.
- 416 Dickson, A.G., Sabine, C.L., and Christian, J.R.: Guide to best practices for ocean CO₂ measurements, PICES
- 417 Spec. Publ., 3, North Pacific Marine Science Organization Sidney, British Columbia, 191 pp., 2007.
- 418 Dickson, A. and Millero, F.: A comparison of the equilibrium constants for the dissociation of carbonic acid in
- 419 seawater media, Deep-Sea Res., 34, 1733–1743, doi:10.1016/0198-0149(87)90021-5, 1987.
- 420 Doney, S.C., Fabry, V.J., Feely, R.A., and Kleypas, J.A.: Ocean acidification: the other CO₂ problem, Annu.
- 421 Rev. Mar. Sci., 1, 169–192, doi:10.1146/annurev.marine.010908.163834, 2009.

- 422 Dore, J.E., Lukas, R., Sadler, D.W., Church, M.J., and Karl, D.M.: Physical and biogeochemical modulation of
- 423 ocean acidification in the central North Pacific, Proc. Natl. Acad. Sci., 106, 12235-12240,
- 424 doi:10.1073/pnas.0906044106, 2009.
- 425 Eakins, B.W. and Sharman, G.F.: Volumes of the World's Oceans from ETOPO1, NOAA National Geophysical
- 426 Data Center, Boulder, CO, 2010.
- 427 Feely, R.A., Doney, S.C., and Cooley, S.R.: Ocean acidification: Present and future changes in a high-CO₂
- 428 world, Oceanography, 22, 36-47, doi:10.5670/oceanog.2009.95, 2009.
- 429 Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J., and Millero, F.J.: Impact of
- 430 Anthropogenic CO₂ on the CaCO₃ System in the Oceans, Science, 305, 362–366, doi:10.1126/science.1097329, 431 2004.
- 432 Flatau, M.K., Talley, L., and Niiler, P.P.: The North Atlantic Oscillation, Surface Current Velocities, and SST 433 Changes in the Subpolar North Atlantic, J. Clim., 16, 2355–2369, doi:10.1175/2787.1, 2003.
- Fogelqvist, E., Blindheim, J., Tanhua, T., Østerhus, S., Buch, E., and Rey, F.: Greenland-Scotland overflow 434 435 studied by hydro-chemical multivariate analysis, Deep Sea Res. Part I: Oceanogr. Res. Pap., 50, 73-102, 436 doi:10.1016/S0967-0637(02)00131-0, 2003.
- Fröb, F., Olsen, A., Våge, K., Moore, K., Yashayaev, I., Jeannson, E., and Rajasakaren, B.: Record deep 437
- 438 convection in the Irminger Sea in winter 2014-15, OSM, New Orleans, Louisiana, USA, 21-16 February 2016, 439 HE11A-02, 2016.
- 440 García-Ibáñez, M.I., Pardo, P.C., Carracedo, L.I., Mercier, H., Lherminier, P., Ríos, A.F., and Pérez, F.F.:
- 441 Structure, transports and transformations of the water masses in the Atlantic Subpolar Gyre, Prog. Oceanogr., 442
- 135, 18-36, doi:10.1016/j.pocean.2015.03.009, 2015.
- 443 Gattuso, J.-P., Brewer, P.G., Hoegh-Guldberg, O., Kleypas, J.A., Pörtner, H.-O., and Schmidt, D.N.: Cross-444 chapter box on ocean acidification, in: IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and
- 445 Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment
- 446 Report of the Intergovernmental Panel on Climate Change [Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J.,
- 447 Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., Girma, B., Kissel, E.S.,
- 448 Levy, A.N., MacCracken, S., Mastrandrea, P.R., and White, L.L. (eds.)], Cambridge University Press,
- 449 Cambridge, United Kingdom and New York, NY, USA, 129-13, 2014.
- 450 Gehlen, M., Gruber, N., Gangstø, R., Bopp, L., and Oschlies, A.: Biogeochemical consequences of ocean
- 451 acidification and feedbacks to the earth system, in: Ocean Acidification, Vol. 1 [Gattuso, J.-P. and Hansson, L.
- 452 (eds.)], Oxford University Press, 230-248, 2011.
- 453 González-Dávila, M., Santana-Casiano, J.M., Rueda, M.J., and Llinás, O.: The water column distribution of carbonate system variables at the ESTOC site from 1995 to 2004, Biogeosciences, 7, 3067-3081, 454 doi:10.5194/bg-7-3067-2010, 2010. 455
- 456 Gourcuff, C., Lherminier, P., Mercier, H., and Le Traon, P.Y.: Altimetry Combined with Hydrography for Ocean
- 457 Transport Estimation, J. Atmospheric Ocean. Technol., 28, 1324–1337, doi:10.1175/2011JTECH0818.1, 2011.
- 458 Guallart, E.F., Fajar, N.M., Padín, X.A., Vázquez-Rodríguez, M., Calvo, E., Ríos, A.F., Hernández-Guerra, A.,
- 459 Pelejero, C., and Pérez, F.F.: Ocean acidification along the 24.5°N section in the subtropical North Atlantic,
- 460 Geophys. Res. Lett., 42, 2014GL062971, doi:10.1002/2014GL062971, 2015.

- 461 Häkkinen, S. and Rhines, P.B.: Decline of subpolar North Atlantic circulation during the 1990s, Science, 304,
- 462 555–559, doi:10.1126/science.1094917, 2004.
- 463 Johnson, K.M., Wills, K.D., Butler, D.B., Johnson, W.K., and Wong, C.S.: Coulometric total carbon dioxide
- 464 analysis for marine studies: maximizing the performance of an automated gas extraction system and coulometric
- 465 detector, Mar. Chem., 44, 167–187, doi:10.1016/0304-4203(93)90201-X, 1993.
- 466 Jones, D.C., Ito, T., Takano, Y., and Hsu, W.-C.: Spatial and seasonal variability of the air-sea equilibration
- 467 timescale of carbon dioxide, Glob. Biogeochem. Cycles, 28, 1163–1178, doi:10.1002/2014GB004813, 2014.
- 468 Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S.C., Graven, H.D., Gruber, N., McKinley,
- 469 G.A., Murata, A., Ríos, A.F., and Sabine, C.L.: Global ocean storage of anthropogenic carbon, Biogeosciences,
- 470 10, 2169–2191, doi:10.5194/bg-10-2169-2013, 2013.
- Kieke, D., Rhein, M., Stramma, L., Smethie, W.M., Bullister, J.L., and LeBel, D.A.: Changes in the pool of
 Labrador Sea Water in the subpolar North Atlantic, Geophys. Res. Lett., 34, L06605,
 doi:10.1029/2006GL028959, 2007.
- 474 Koltermann, K.P., Pfannkuche, O., and Meincke, J.: JGOFS, OMEX and WOCE in the North Atlantic 1994,
- cruise no. 30: 7 September-22 December 1994, Meteor-Berichte, 96-3, Universität Hamburg, 148 pp., 1996.
- 476 Langdon, C., Takahashi, T., Sweeney, C., Chipman, D., Goddard, J., Marubini, F., Aceves, H., Barnett, H., and
- 477 Atkinson, M.J.: Effect of calcium carbonate saturation state on the calcification rate of an experimental coral
- 478 reef, Glob. Biogeochem. Cycles, 14, 639–654, doi:10.1029/1999GB001195, 2000.
- Lazier, J., Hendry, R., Clarke, A., Yashayaev, I., and Rhines, P.: Convection and restratification in the Labrador
 Sea, 1990–2000, Deep Sea Res. Part I: Oceanogr. Res. Pap., 49, 1819–1835, doi:10.1016/S0967-0637(02)00064X, 2002.
- 482 Le Quéré, C., Moriarty, R., Andrew, R.M., Canadell, J.G., Sitch, S., Korsbakken, J.I., Friedlingstein, P., Peters,
- 483 G.P., Andres, R.J., Boden, T.A., Houghton, R.A., House, J.I., Keeling, R.F., Tans, P., Arneth, A., Bakker,
- 484 D.C.E., Barbero, L., Bopp, L., Chang, J., Chevallier, F., Chini, L.P., Ciais, P., Fader, M., Feely, R.A., Gkritzalis,
- 485 T., Harris, I., Hauck, J., Ilyina, T., Jain, A.K., Kato, E., Kitidis, V., Klein Goldewijk, K., Koven, C.,
- 486 Landschützer, P., Lauvset, S.K., Lefèvre, N., Lenton, A., Lima, I.D., Metzl, N., Millero, F., Munro, D.R.,
- 487 Murata, A., Nabel, J.E.M.S., Nakaoka, S., Nojiri, Y., O'Brien, K., Olsen, A., Ono, T., Pérez, F.F., Pfeil, B.,
- 488 Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S., Schuster, U., Schwinger, J., Séférian, R., Steinhoff,
- 489 T., Stocker, B.D., Sutton, A.J., Takahashi, T., Tilbrook, B., van der Laan-Luijkx, I.T., van der Werf, G.R., van
- 490 Heuven, S., Vandemark, D., Viovy, N., Wiltshire, A., Zaehle, S., and Zeng, N.: Global Carbon Budget 2015,
- 491 Earth Syst. Sci. Data, 7, 349–396, doi:10.5194/essd-7-349-2015, 2015.
- Lherminier, P., Mercier, H., Gourcuff, C., Alvarez, M., Bacon, S., and Kermabon, C.: Transports across the 2002
 Greenland-Portugal Ovide section and comparison with 1997, J. Geophys. Res., 112, C07003,
 doi:10.1029/2006JC003716, 2007.
- 495 Lherminier, P., Mercier, H., Huck, T., Gourcuff, C., Perez, F.F., Morin, P., Sarafanov, A., and Falina, A.: The
- 496 Atlantic Meridional Overturning Circulation and the subpolar gyre observed at the A25-OVIDE section in June
- 497 2002 and 2004, Deep Sea Res. Part I: Oceanogr. Res. Pap., 57, 1374–1391, doi:10.1016/j.dsr.2010.07.009, 2010.
- 498 Liu, X., Patsavas, M.C., and Byrne, R.H.: Purification and Characterization of meta-Cresol Purple for
- 499 Spectrophotometric Seawater pH Measurements, Environ. Sci. Technol., 45, 4862–4868, doi:10.1021/es200665d
- 500 , 2011.

- 501 Maier-Reimer, E. and Hasselmann, K.: Transport and storage of CO₂ in the ocean-an inorganic ocean-
- 502 circulation carbon cycle model, Clim. Dyn., 2, 63–90, doi:10.1007/BF01054491, 1987.
- 503 Matear, R.J. and Lenton, A.: Quantifying the impact of ocean acidification on our future climate,
- 504 Biogeosciences, 11, 3965–3983, doi:10.5194/bg-11-3965-2014, 2014.
- 505 Mehrbach, C., Culberson, C.H., Hawley, J.E., and Pytkowicz, R.M.: Measurement of the apparent dissociation
- constants of carbonic acid in seawater at atmospheric pressure, Limnol. Oceanogr., 18, 897–907,
 doi:10.4319/lo.1973.18.6.0897, 1973.
- 508 Meincke, J. and Becker, G.: WOCE-NORD, Cruise No. 18, 2 September-26 September 1991. Nordsee, cruise
- 509 No. 19, 30 September-12 October 1991. METEOR-Berichte 93-1, Univ. Hambg., 105 pp., 1993.
- 510 Mercier, H., Lherminier, P., Sarafanov, A., Gaillard, F., Daniault, N., Desbruyères, D., Falina, A., Ferron, B.,
- 511 Gourcuff, C., and Huck, T.: Variability of the meridional overturning circulation at the Greenland-Portugal
- 512 OVIDE section from 1993 to 2010, Prog. Oceanogr., 132, 250–261, doi:10.1016/j.pocean.2013.11.001, 2015.
- 513 Millero, F.J., Zhang, J.Z., Lee, K., and Campbell, D.M.: Titration alkalinity of seawater, Mar. Chem., 44, 153–
 514 165, doi:10.1016/0304-4203(93)90200-8, 1993.
- 515 Mintrop, L., Pérez, F.F., González-Dávila, M., Santana-Casiano, J.M., and Körtzinger, A.: Alkalinity
- 516 determination by potentiometry: Intercalibration using three different methods, Cienc. Mar., 26, 23-37,
- 517 doi:10.7773/cm.v26i1.573, 2000.
- 518 Olafsson, J., Olafsdottir, S.R., Benoit-Cattin, A., Danielsen, M., Arnarson, T.S., and Takahashi, T.: Rate of
- 519 Iceland Sea acidification from time series measurements, Biogeosciences, 6, 2661–2668, doi:10.5194/bg-6520 2661-2009, 2009.
- 521 Olafsson, J., Olafsdottir, S.R., Benoit-Cattin, A., Takahashi, T.: The Irminger Sea and the Iceland Sea time series
 522 measurements of sea water carbon and nutrient chemistry 1983–2008, Earth Syst. Sci. Data, 2, 99–104,
 523 doi:10.5194/essd-2-99-2010, 2010.
- 524 Olsen, A., Abdirahman, O.M., Bellerby, R.G., Johannessen, T., Ninnemann, U.S., Brown, K.R., Olsson, K.A.,
- 525 Olafsson, J., Nondal, G., Kivimäe, C., Kringstad, S., Neill, C., Olafsdottir, S.: Magnitude and Origin of the
- 526 Anthropogenic CO₂ Increase and the ¹³C Suess Effect in the Nordic Seas since 1981, Glob. Biogeochem. Cycles,
- 527 20, GB3027, doi:10.1029/2005GB002669, 2006.
- Olsen, A., Key, R.M., Heuven, S. van, Lauvset, S.K., Velo, A., Lin, X., Schirnick, C., Kozyr, A., Tanhua, T.,
 Hoppema, M., Jutterström, S., Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F.F., and Suzuki, T.: An internally
- 530 consistent data product for the world ocean: the Global Ocean Data Analysis Project, version 2 (GLODAPv2),
- 531 Earth Syst. Sci. Data Discuss., doi:10.5194/essd-2015-42, in review, 2016.
- 532 Ono, T., Watanabe, S., Okuda, K., and Fukasawa, M.: Distribution of total carbonate and related properties in
- 533 the North Pacific along 30°N, J. Geophys. Res. Oceans, 103, 30873–30883, doi:10.1029/1998JC900018, 1998.
- 534 Orr, J.C.: Recent and future changes in ocean carbonate chemistry, in: Ocean Acidification, Vol. 1, [Gattuso, J.-
- 535 P. and Hansson, L. (eds.)], Oxford University Press, 41–66, 2011.
- 536 Orr, J.C., Fabry, V.J., Aumont, O., Bopp, L., Doney, S.C., Feely, R.A., Gnanadesikan, A., Gruber, N., Ishida, A.,
- 537 Joos, F., Key, R.M., Lindsay, K., Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R.G., Plattner,
- 538 G.-K., Rodgers, K.B., Sabine, C.L., Sarmiento, J.L., Schlitzer, R., Slater, R.D., Totterdell, I.J., Weirig, M.F.,
- 539 Yamanaka, Y., and Yool, A.: Anthropogenic ocean acidification over the twenty-first century and its impact on
- 540 calcifying organisms, Nature, 437, 681–686, doi:10.1038/nature04095, 2005.

- 541 Pérez, F.F. and Fraga, F.: A precise and rapid analytical procedure for alkalinity determination, Mar. Chem., 21,
- 542 169–182, doi:10.1016/0304-4203(87)90037-5, 1987.
- 543 Pérez, F.F., Mercier, H., Vázquez-Rodríguez, M., Lherminier, P., Velo, A., Pardo, P.C., Rosón, G., and Ríos,
- A.F.: Atlantic Ocean CO₂ uptake reduced by weakening of the meridional overturning circulation, Nat. Geosci.,
- 545 6, 146–152, doi:10.1038/ngeo1680, 2013.
- 546 Pérez, F.F., Vázquez-Rodríguez, M., Louarn, E., Padín, X.A., Mercier, H., and Ríos, A.F.: Temporal variability
- of the anthropogenic CO₂ storage in the Irminger Sea, Biogeosciences, 5, 1669–1679, doi:10.5194/bg-5-16692008, 2008.
- 549 Pérez, F.F., Vázquez-Rodríguez, M., Mercier, H., Velo, A., Lherminier, P., and Ríos, A.F.: Trends of
- anthropogenic CO_2 storage in North Atlantic water masses, Biogeosciences, 7, 1789–1807, doi:10.5194/bg-7-1789-2010, 2010.
- 552 Pickart, R.S., Straneo, F., and Moore, G.K.: Is Labrador Sea Water formed in the Irminger basin?, Deep Sea Res.
- 553 Part I: Oceanogr. Res. Pap., 50, 23–52, doi:10.1016/S0967-0637(02)00134-6, 2003.
- Piron, A., Thierry, V., Mercier, H., and Caniaux, G.: Argo float observations of basin-scale deep convection in
 the Irminger sea during winter 2011-2012, Deep Sea Res. Part I: Oceanogr. Res. Pap., 109, 76–90,
 doi:10.1016/j.dsr.2015.12.012, 2016.
- 557 Pörtner, H.O., Langenbuch, M., and Reipschläger, A.: Biological Impact of Elevated Ocean CO₂ Concentrations:
- Lessons from Animal Physiology and Earth History, J. Oceanogr., 60, 705–718, doi:10.1007/s10872-004-57630, 2004.
- 560 Quay, P., Sonnerup, R., Stutsman, J., Maurer, J., Körtzinger, A., Padin, X.A., and Robinson, C.: Anthropogenic 561 CO_2 accumulation rates in the North Atlantic Ocean from changes in the ¹³C/¹²C of dissolved inorganic carbon,
- 562 Glob. Biogeochem. Cycles, 21, GB1009, doi:10.1029/2006GB002761, 2007.
- 563 Raven, J., Caldeira, K., Elderfield, H., Hoegh-Guldberg, O., Liss, P., Riebesell, U., Shepherd, J., Turley, C., and
- Watson, A.: Ocean acidification due to increasing atmospheric carbon dioxide, R. Soc. Lond. Document No.
 12/05, The Royal Society, London, 2005.
- 566 Rhein, M., Fischer, J., Smethie, W.M., Smythe-Wright, D., Weiss, R.F., Mertens, C., Min, D.-H., Fleischmann,
- 567 U., and Putzka, A.: Labrador Sea Water: Pathways, CFC inventory, and formation rates, J. Phys. Oceanogr., 32,
- 568 648–665, doi:10.1175/1520-0485(2002)032<0648:LSWPCI>2.0.CO;2, 2002.
- 569 Riebesell, U., Zondervan, I., Rost, B., Tortell, P.D., Zeebe, R.E., and Morel, F.M.M.: Reduced calcification of
- 570 marine plankton in response to increased atmospheric CO₂, Nature, 407, 364–367, doi:10.1038/35030078, 2000.
- 571 Ríos, A.F., Álvarez-Salgado, X.A., Pérez, F.F., Bingler, L.S., Arístegui, J., and Mémery, L.: Carbon dioxide
- along WOCE line A14: Water masses characterization and anthropogenic entry, J. Geophys. Res. Oceans, 108,
- 573 3123, doi:10.1029/2000JC000366, 2003.
- 574 Ríos, A.F., Resplandy, L., García-Ibáñez, M.I., Fajar, N.M., Velo, A., Padin, X.A., Wanninkhof, R., Steinfeldt,
- 575 R., Rosón, G., and Pérez, F.F.: Decadal acidification in the water masses of the Atlantic Ocean, Proc. Natl. Acad.
- 576 Sci., 112, 9950–9955, doi:10.1073/pnas.1504613112, 2015.
- 577 Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace,
- 578 D.W.R., Tilbrook, B., Millero, F.J., Peng, T.-H., Kozyr, A., Ono, T., and Rios, A.F.: The Oceanic Sink for
- 579 Anthropogenic CO₂, Science, 305, 367–371, doi:10.1126/science.1097403, 2004.

- 580 Santana-Casiano, J.M., González-Dávila, M., Rueda, M.-J., Llinás, O., and González-Dávila, E.-F.: The
- 581 interannual variability of oceanic CO₂ parameters in the northeast Atlantic subtropical gyre at the ESTOC site,
- 582 Glob. Biogeochem. Cycles, 21, GB1015, doi:10.1029/2006GB002788., 2007.
- 583 Sarafanov, A., Falina, A., Mercier, H., Sokov, A., Lherminier, P., Gourcuff, C., Gladyshev, S., Gaillard, F., and
- 584 Daniault, N.: Mean full-depth summer circulation and transports at the northern periphery of the Atlantic Ocean
- 585 in the 2000s, J. Geophys. Res., 117, C01014, doi:10.1029/2011JC007572, 2012.
- 586 Sarafanov, A., Falina, A., Sokov, A., and Demidov, A.: Intense warming and salinification of intermediate
- 587 waters of southern origin in the eastern subpolar North Atlantic in the 1990s to mid-2000s, J. Geophys. Res.
- 588 Oceans, 113, C12022, doi:10.1029/2008JC004975, 2008.
- 589 Sarafanov, A., Mercier, H., Falina, A., Sokov, A., and Lherminier, P.: Cessation and partial reversal of deep
- water freshening in the northern North Atlantic: observation-based estimates and attribution, Tellus A, 62, 80–
 90, doi:10.1111/j.1600-0870.2009.00418.x, 2010.
- 592 Sarmiento, J.L., Orr, J.C., and Siegenthaler, U.: A perturbation simulation of CO₂ uptake in an ocean general
- 593 circulation model, J. Geophys. Res. Oceans, 97, 3621–3645, doi:10.1029/91JC02849, 1992.
- 594 Steinfeldt, R., Rhein, M., Bullister, J.L., and Tanhua, T.: Inventory changes in anthropogenic carbon from 1997–
- 595 2003 in the Atlantic Ocean between 20°S and 65°N, Glob. Biogeochem. Cycles, 23, GB3010,
 596 doi:10.1029/2008GB003311, 2009.
- Stoll, M.H.C., van Aken, H.M., de Baar, H.J.W., and Kraak, M.: Carbon dioxide characteristics of water masses
 in the northern North Atlantic Ocean, Mar. Chem., 55, 217–232, doi:10.1016/S0304-4203(96)00058-8, 1996.
- 599 Sy, A., Rhein, M., Lazier, J.R.N., Koltermann, K.P., Meincke, J., Putzka, A., and Bersch, M.: Surprisingly rapid
- spreading of newly formed intermediate waters across the North Atlantic Ocean, Nature, 386, 675–679,
 doi:10.1038/386675a0, 1997.
- 602 Takahashi, T. and Brewer, P.: Hydrographic and chemistry data for the TTO/NAS expedition, April-October,
- 603 1981: Revised carbon chemistry data Rep. NDP004, Carbon Dioxide Inf. Anal. Cent., Oak Ridge, TN, 1986.
- Tanhua, T. and Wallace, D.W.R.: Consistency of TTO-NAS inorganic carbon data with modern measurements,
 Geophys. Res. Lett., 32, L14618, doi:10.1029/2005GL023248, 2005.
- Thierry, V., de Boisséson, E., and Mercier, H.: Interannual variability of the Subpolar Mode Water properties
 over the Reykjanes Ridge during 1990–2006, J. Geophys. Res. Oceans, 113, C04016,
 doi:10.1029/2007JC004443, 2008.
- 609 van Aken, H.M. and de Boer, C.J.: On the synoptic hydrography of intermediate and deep water masses in the
- 610 Iceland Basin, Deep Sea Res. Part I: Oceanogr. Res. Pap., 42, 165–189, doi:10.1016/0967-0637(94)00042-Q,
 611 1995.
- 612 Vázquez-Rodríguez, M., Padin, X.A., Ríos, A.F., Bellerby, R.G.J., and Pérez, F.F.: An upgraded carbon-based
- 613 method to estimate the anthropogenic fraction of dissolved CO₂ in the Atlantic Ocean, Biogeosciences Discuss.,
- 614 6, 4527–4571, doi:10.5194/bgd-6-4527-2009, 2009a.
- 615 Vázquez-Rodríguez, M., Touratier, F., Lo Monaco, C., Waugh, D.W., Padin, X.A., Bellerby, R.G.J., Goyet, C.,
- 616 Metzl, N., Ríos, A.F., and Pérez, F.F.: Anthropogenic carbon distributions in the Atlantic Ocean: data-based
- 617 estimates from the Arctic to the Antarctic, Biogeosciences, 6, 439–451, doi:10.5194/bg-6-439-2009, 2009b.

- 618 Vázquez-Rodríguez, M., Padin, X.A., Pardo, P.C., Ríos, A.F., and Pérez, F.F.: The subsurface layer reference to
- 619 calculate preformed alkalinity and air-sea CO₂ disequilibrium in the Atlantic Ocean, J. Mar. Syst., 94, 52-63,
- 620 doi:10.1016/j.jmarsys.2011.10.008, 2012a.
- 621 Vázquez-Rodríguez, M., Pérez, F.F., Velo, A., Ríos, A.F., and Mercier, H.: Observed acidification trends in
- 622 North Atlantic water masses, Biogeosciences, 9, 5217–5230, doi:10.5194/bg-9-5217-2012, 2012b.
- 623 Velo, A., Pérez, F.F., Tanhua, T., Gilcoto, M., Ríos, A.F., and Key, R.M.: Total alkalinity estimation using MLR
- 624 and neural network techniques, J. Mar. Syst., 111–112, 11–18, doi:10.1016/j.jmarsys.2012.09.002, 2013.
- 625 Wakita, M., Watanabe, S., Honda, M., Nagano, A., Kimoto, K., Matsumoto, K., Kitamura, M., Sasaki, K.,
- 626 Kawakami, H., Fujiki, T., Sasaoka, K., Nakano, Y., and Murata, A.: Ocean acidification from 1997 to 2011 in
- the subarctic western North Pacific Ocean, Biogeosciences, 10, 7817–7827, doi:10.5194/bg-10-7817-2013,
 2013.
- 629 Wallace, W.R.: Storage and transport of excess CO₂ in the oceans: The JGOFS/WOCE global CO₂ survey, in:
- 630 Ocean Circulation and Climate [Siedler, G., Church, J., and Gould J. (eds.)], Academic Press, 489-521, 2001.
- 631 Yashayaev, I.: Hydrographic changes in the Labrador Sea, 1960-2005, Prog. Oceanogr., 73, 242-276,
- 632 doi:10.1016/j.pocean.2007.04.015, 2007.
- 633 Yashayaev, I., Bersch, M., and van Aken, H.M.: Spreading of the Labrador Sea Water to the Irminger and
- 634 Iceland basins, Geophys. Res. Lett., 34, L10602, doi:10.1029/2006GL028999, 2007.
- 635 Yashayaev, I., Holliday, N.P., Bersch, M., and van Aken, H.M.: The History of the Labrador Sea Water:
- 636 Production, Spreading, Transformation and Loss, in: Arctic-Subarctic Ocean Fluxes: Defining the Role of the
- 637 Northern Seas in Climate [Dickson, R.R., Meincke, J., and Rhines, P. (eds.)], Springer Netherlands, 569–612,
- 638 2008.
- 639 Zunino, P., Pérez, F.F., Fajar, N.M., Guallart, E.F., Ríos, A.F., Pelegrí, J.L., and Hernández-Guerra, A.:
- Transports and budgets of anthropogenic CO_2 in the tropical North Atlantic in 1992–1993 and 2010–2011, Glob.
- 641 Biogeochem. Cycles, 29, 2014GB005075, doi:10.1002/2014GB005075, 2015.

642	Table 1: List of hydrographic cruises used in this study (Fig. 1a). P.I. denotes principal investigator, and #St the
643	number of stations selected.

Cruise Name	Expocode	Month/Year	Vessel	P.I.	#St	Reference
TTO-NAS L6	316N19810821	08-09/1981	Knorr	W.J. Jenkins	11	Takahashi and Brewer (1986)
AR07E	64TR91_1	04-05/1991	Tyro	H.M. van Aken	12	Stoll et al. (1996)
A01E	06MT18_1	09/1991	Meteor	J. Meincke	15	Meincke and Becker (1993)
A01E	06MT30_3	11-12/1994	Meteor	J. Meincke	27	Koltermann et al. (1996)
AR07E	06MT39_5	08-09/1997	Meteor	A. Sy	32	Rhein et al. (2002)
OVIDE 2002	35TH20020610	06-07/2002	Thalassa	H. Mercier	38	Lherminier et al. (2007)
OVIDE 2004	35TH20040604	06-07/2004	Thalassa	T. Huck	56	Lherminier et al. (2010)
OVIDE 2006	06MM20060523	05-06/2006	Maria S. Merian	P. Lherminier	44	Gourcuff et al. (2011)
OVIDE 2008	35TH20080610	06-07/2008	Thalassa	H. Mercier	45	Mercier et al. (2015)
OVIDE 2010	35TH20100610	06/2010	Thalassa	T. Huck; H. Mercier	46	Mercier et al. (2015)
CATARINA ^a	29AH20120623	06-07/2012	Sarmiento de Gamboa	A.F. Ríos	44	This work
GEOVIDE ^a	35PQ20140517	05-06/2014	Pourquoi Pas?	G. Sarthou	31	This work
58GS20150410	58GS20150410	04-05/2015	G.O. Sars	A. Olsen	10	Fröb et al. (2016)

 644
 *Both CATARINA (http://catarina.iim.csic.es/en) and GEOVIDE (http://www.geovide.obs-vlfr.fr) cruises contain the OVIDE section

 645
 (http://wwz.ifremer.fr/lpo/La-recherche/Projets-en-cours/OVIDE), and in the study are referred as OVIDE 2012 and 2014, respectively.

646	Table 2: Mean values \pm confidence interval of pressure (in dbar), potential temperature (θ , in °C), salinity, Apparent
647	Oxygen Utilization (AOU, in µmol·kg ⁻¹), total alkalinity (A _T , in µmol·kg ⁻¹), anthropogenic CO ₂ (C _{ant} , in µmol·kg ⁻¹) and
648	pH at total scale and 25°C (pH _{T25}) for the bottom waters of the Iberian Abyssal Plain sampled during the seven
649	OVIDE cruises. "n" represents the number of data considered in each cruise. The last row represents the inter-cruise
650	confidence interval (i.e., the confidence interval of the mean values across the seven cruises).

Year (n)	Pressure	θ	Salinity	AOU	$\mathbf{A}_{\mathbf{T}}$	Cant	pH_{T25}
2002 (144)	4205 ± 1052	2.182 ± 0.160	34.913 ± 0.016	86.1 ± 4.0	2351 ± 6	6.4 ± 2.6	7.740 ± 0.006
2004 (158)	4263 ± 998	2.162 ± 0.150	34.908 ± 0.014	87.1 ± 2.8	2352 ± 6	6.2 ± 2.4	7.741 ± 0.006
2006 (132)	4252 ± 1058	2.170 ± 0.164	34.913 ± 0.016	85.4 ± 3.2	2350 ± 6	6.2 ± 2.6	7.741 ± 0.006
2008 (125)	4206 ± 1022	2.179 ± 0.150	34.911 ± 0.014	84.9 ± 3.6	2353 ± 8	7.0 ± 3.2	7.744 ± 0.006
2010 (131)	4312 ± 1048	2.163 ± 0.154	34.908 ± 0.016	85.9 ± 3.2	2351 ± 6	7.0 ± 2.4	7.740 ± 0.004
2012 (102)	4397 ± 1052	2.149 ± 0.154	34.909 ± 0.016	87.9 ± 3.2	2352 ± 6	5.1 ± 2.4	7.742 ± 0.004
2014 (54)	4441 ± 954	2.141 ± 0.138	34.904 ± 0.014	87.4 ± 2.6	2353 ± 6	5.5 ± 3.0	7.743 ± 0.006
	70	0.011	0.002	0.8	0.8	0.5	0.001

- 652 Table 3: Observed temporal changes of pH at total scale and in situ conditions (in situ temperature and pressure; 653 dpH_{Tis} obs) for the main water masses in the Irminger and Iceland basins for the period 1981–2015. pH changes caused
- 654 by the main drivers (in situ temperature, T_{is}; salinity, S; total alkalinity, A_T; total dissolved inorganic carbon, DIC;
- anthropogenic CO₂, C_{ant}; natural DIC, C_{nat}) are also shown, as well as the pH changes result of the sum of the pH 655
- 656
- changes caused by the individual drivers ($\frac{dPH_{TIS}}{dt}$ model). All the trends are calculated based on the annually interpolated values and are in 10⁻³ pH units·yr⁻¹. Values in parenthesis are the percentages of the observed pH change explained by each one of its drivers. Confront Fig. 1 for water mass acronyms. 657 658

.

		$rac{\mathrm{d} p H_{\mathrm{Tis}}}{\mathrm{d} t} \mathrm{obs}$	$rac{\partial \mathbf{p} \mathbf{H}_{\mathrm{Tis}}}{\partial \mathrm{T}_{ls}} rac{\mathrm{d} \mathrm{T}_{ls}}{\mathrm{d} \mathrm{t}}$	<u>ðpH_{Tis} dS</u> ðS dt	$\frac{\partial p H_{TIS}}{\partial A_T} \frac{dA_T}{dt}$	<u> </u>	<u> </u>	<u> </u>	<u>dpH_{Tis} model</u>
	SPMW	-1.31 ± 0.08	$-0.24\pm0.06~(18)$	-0.02 ± 0.01 (2)	0.29 ± 0.05 (-22)	$-1.34 \pm 0.12 (102)$	$-1.59 \pm 0.10 \ (121)$	0.24 ± 0.06 (-19)	$-1.32 \pm 0.14 \ (100.4)$
	wSJu	-1.30 ± 0.08	$\textbf{-0.22}\pm0.02~(17)$	-0.01 $_7\pm 0.00_1(1)$	0.25 ± 0.01 (-19)	$-1.31 \pm 0.08 (101)$	-1.09 ± 0.13 (84)	$-0.22 \pm 0.13 \ (17)$	$-1.30\pm0.08\;(100.2)$
Irminger	cLSW	$\textbf{-1.06} \pm 0.08$	$-0.14\pm0.04\;(13)$	$-0.01_6\pm 0.00_4(2)$	$0.31 \pm 0.06 (-29)$	$-1.22 \pm 0.10 \ (115)$	$-0.54\pm0.04~(51)$	-0.68 ± 0.11 (64)	$-1.07 \pm 0.12 \ (100.4)$
	ISOW	-0.82 ± 0.08	0.03 ± 0.02 (-3)	$0.00_4 \pm 0.00_2 \ (0)$	-0.01 ± 0.05 (1)	$-0.85\pm0.10\ (103)$	-0.74 ± 0.06 (89)	$-0.11\pm0.07~(14)$	$\textbf{-0.83} \pm \textbf{0.11} \; (100.4)$
	DSOW	-0.91 ± 0.09	-0.06 ± 0.03 (6)	$-0.00_5\pm 0.00_2(1)$	$0.23 \pm 0.06 \ (-25)$	-1.09 ± 0.12 (119)	-0.89 ± 0.08 (97)	-0.20 ± 0.07 (22)	$-0.92\pm0.14\;(100.7)$
	SPMW	$\textbf{-1.18}\pm0.09$	$-0.40\pm0.08~(34)$	-0.03 ± 0.01 (2)	$0.44 \pm 0.07 \ (-37)$	$-1.20 \pm 0.11 \ (102)$	$\textbf{-1.25}\pm0.07~(106)$	0.05 ± 0.06 (-4)	$\textbf{-1.19} \pm \textbf{0.15} \ \textbf{(100.6)}$
-	wSJu	-0.80 ± 0.05	0.03 ± 0.01 (-4)	$0.00_4 \pm 0.00_1 \ (-1)$	0.06 ± 0.04 (-7)	$-0.90 \pm 0.04 \ (112)$	-0.97 ± 0.12 (121)	0.07 ± 0.09 (-9)	$-0.81\pm0.06~(100.4)$
Iceland	cLSW	-0.76 ± 0.06	0.05 ± 0.02 (-6)	$0.00_7 \pm 0.00_2 \ (-1)$	$0.19 \pm 0.05 (-24)$	$-1.01 \pm 0.07 (132)$	$-0.69 \pm 0.05 \ (91)$	$-0.31 \pm 0.06 \ (41)$	$-0.77 \pm 0.09 \; (100.4)$
	ISOW	-0.61 ± 0.06	0.03 ± 0.01 (-4)	$0.00_4 \pm 0.00_1$ (-1)	0.31 ± 0.07 (-51)	$-0.95\pm0.08~(156)$	-0.54 ± 0.07 (89)	$-0.41\pm0.08~(67)$	$-0.61 \pm 0.10 \ (100.1)$

Figure 1: (a) Sampling locations of the thirteen cruises used in this study (1981–2015) plotted on bathymetry (500 m 661 662 intervals). The black line shows the boundary between the Irminger and the Iceland basins constituted by the 663 Reykjanes Ridge. CGFZ = Charlie-Gibbs Fracture Zone. (b) Limits of the layers and basins considered in this study 664 plotted on top of the mean salinity of the sections. The isopycnals delineating the layers are defined by potential 665 density (σ_0 , in kg·m³), and the vertical white line is the limit (Reykjanes Ridge) between the Irminger (left) and Iceland basins (right). The dashed vertical lines represent the Longitude axis marks. The layer acronyms are 666 Subpolar Mode Water (SPMW), upper and classical Labrador Sea Water (uLSW and cLSW, respectively), 667 668 Iceland-Scotland Overflow Water (ISOW) and Denmark Strait Overflow Water (DSOW).

Figure 2: Mean distributions along the cruise track, from Greenland (left) to the Iceland basin (right) over study
period (1981–2015), for: (a) potential temperature (θ, in °C), (b) salinity, (c) pH at total scale and in situ conditions
(pHTis), (d) total alkalinity (AT, in µmol·kg⁻¹), (e) apparent oxygen utilization (AOU, in µmol·kg⁻¹), (f) total dissolved
inorganic carbon (DIC; in µmol·kg⁻¹), (g) natural DIC (Cnat, in µmol·kg⁻¹) and (h) anthropogenic CO₂ (Cant, in
µmol·kg⁻¹). The dashed vertical lines represent the Longitude axis marks.

676Figure 3: Temporal evolution of average pH at total scale and in situ conditions (pH_{Tis}) in the main water masses of677the Irminger (a) and Iceland (b) basins, between 1981 and 2015. Each point represents the average pH_{Tis} of a678particular layer (SPMW (red dots), uLSW (blue dots), cLSW (black dots), ISOW (green dots) and DSOW (magenta679dots)) at the time of each cruise (Table S1). The error bars are two times the error of the mean $(2\sigma = 2x(Standard680Deviation)/<math>\sqrt{N}$, where N is the number of samples of each layer). The inset boxes give the trends (in 10⁻³ pH units·yr⁻¹) \pm standard error of the estimate and the correlation coefficients (r²), resulting from the annually interpolated values.682*** denotes that the trend is statistically significant at the 99% level (p-value < 0.01). Confront Fig. 1 for layer</td>683acronyms.

685Figure 4: Temporal evolution between 1981 and 2015 of average (a and b) in situ temperature (T_{is} , in °C) and (c and686d) salinity in the main water masses of the Irminger (a and c) and Iceland (b and c) basins. Each point represents the687average property of a particular layer (SPMW (red dots), uLSW (blue dots), cLSW (black dots), ISOW (green dots)688and DSOW (magenta dots)) at the time of each cruise (Table S1). The error bars are 2σ . The inset boxes give the689trends (in 10^{-3} units·yr⁻¹) ± standard error of the estimate and the correlation coefficients (r²), resulting from the690annually interpolated values. * denotes that the trend is statistically significant at the 90% level (p-value < 0.01), ** at</td>691the 95% level (p-value < 0.05), and *** at 99% level (p-value < 0.01). Confront Fig. 1 for layer acronyms.</td>

692

701Figure 6: Temporal evolution between 1981 and 2015 of average (a and b) anthropogenic CO_2 (C_{ant} in μ mol·kg⁻¹) and702(c and d) natural DIC ($C_{nat} = DIC - C_{ant}$, in μ mol·kg⁻¹) values in the main water masses of the Irminger (a and c) and703Iceland (b and c) basins. Each point represents the average property of a particular layer (SPMW (red dots), uLSW704(blue dots), cLSW (black dots), ISOW (green dots) and DSOW (magenta dots)) at the time of each cruise (Table S1).705The error bars are 20. The inset boxes give the trends (in μ mol·kg⁻¹ yr⁻¹) ± standard error of the estimate and the706correlation coefficients (r²), resulting from the annually interpolated values. * denotes that the trend is statistically707significant at the 90% level (p-value < 0.1), and *** at the 99% level (p-value < 0.01). Confront Fig. 1 for layer</td>708acronyms.